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Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance
in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells.
The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain
resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary
data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcino-
genic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in
diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thiogua-
nine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations
measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance,and might induce Al by
base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-
canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induc-
tion of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical
attack upon DNA. Intracellular reduction of Cr(VI) to Cr(V) or other species that generate oxygen radicals leads to Cr(V) or oxygen radical attack upon
DNA. Arsenite causes chromosome breaks. We propose that arsenic, nickel, and chromium compounds then cause small deletions or mutations in
the 5' or 3' regulatory regions of the c-myc and other protooncogenes, resulting in stabilization of c-myc RNA and higher steady-state levels of c-myc
RNA and protein. We also postulate that nickel-induced oxygen radical generation, Cr(V) ions or oxygen radicals generated by chromium, and arsen-
ite induce inactivating mutations or deletions in tumor suppressor genes. Arsenic, nickel, or chromium compound-induced neoplastic transformation
is postulated to proceed through a combination of activation of c-myc and/or other protooncogenes and inactivation of tumor suppressor. - Environ
Health Perspect 102(Suppl 3):119-125 (1994).
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Introduction

Occupational exposure of humans to

arsenic, nickel, or chromium compounds
correlates with increased frequencies of
skin, lung, esophageal, and nasal carcino-
mas (1-12), and nickel and insoluble hexa-
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valent chromium compounds are carcino-
genic when administered to animals
(1-16). Epidemiological evidence indicates
that occupational exposure to arsenic com-
pounds correlates with increased skin and
respiratory cancer in humans, but this con-
trasts with the lack of carcinogenicity of
arsenic compounds in animals, presenting
an apparent paradox (1,3,6-8,12). These
studies have been extended to the cellular
level, demonstrating that nickel, hexavalent
chromium, and arsenic compounds induce
(17-24) or promote (25) morphological
transformation of cultured rodent cells and
induce anchorage independence in diploid
human fibroblasts (7-10,26,27).

Significant effort has gone into study-
ing the molecular mechanisms of metal
carcinogenesis, and the molecular basis of
metal carcinogenesis is beginning to be
understood. Metal compounds induce
chromosomal aberrations in cultured mam-

malian cells (28,29); however, except for
hexavalent chromium compounds and
platinum coordination complexes, carcino-
genic metal compounds are inactive or at
best weakly active in bacterial and mam-
malian cell mutagenesis assays (7,8,30).
The in vitro mammalian and bacterial
mutagenesis assays currently available do
not effectively detect the DNA alterations
caused by carcinogenic metal salts (28,29).
In this manuscript, I review recent studies
from my laboratory on induction of mor-
phological transformation in C3H/1OTl/2
Cl 8 (1OTl/2) mouse embryo cells and
anchorage independence in diploid human
fibroblasts by carcinogenic metal salts and
hypothesize the possible mechanisms of
metal salt-induced cell transformation.

Materials and Methods
C3H/1OTl/2 Cl 8 mouse embryo fibro-
blasts were cultured according to the meth-
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ods of Reznikoff et al. (31). Assays were
conducted to quantitate chemically
induced cytotoxicity and morphological
transformation (23,24,32,33,34). Assays to
detect chemically induced mutation to
ouabain resistance in 1OTl/2 cells were per-
formed as previously reported (23,24,33).
Diploid human fibroblasts were derived
from circumcised human foreskins and cul-
tured according to the methods of
Biedermann and Landolph (26,24. Assays
to detect metal-induced cytotoxicity,
anchorage independence, and mutation to
6-thioguanine resistance and ouabain resis-
tance were also as described by
Biedermann and Landolph (26,27).

Resufts
Induction ofMorphological
Transformation of 1OT1/2 Cells by
CartinogenicArsenic, Nickel, and
Chromium Compounds

10T1/2 cells are an aneuploid, immortal
mouse cell line derived from embryos of
C3H mice that are contact inhibited, non-
tumorigenic, and have a low frequency of
spontaneous transformation (31). These
cells exhibit a high frequency of morpho-
logical transformation when treated with
chemical carcinogens or radiation
(7,8,23,24,32-35). They are also a useful
model cell culture system used to study the
mechanisms of chemically induced neo-
plastic transformation and to detect car-
cinogens by their ability to induce
morphological transformation of these cells
(7,8,34,35).
We have been studying the ability of

carcinogenic metal salts to induce morpho-
logical transformation of 10T1/2 cells to
gain insight into the mechanisms of metal
carcinogenesis. Our cumulative studies
indicate that carcinogenic arsenic, nickel,
and chromium compounds induce mor-
phological transformation of 1OT1/2 cells
(7,8).
We first examined the ability of

1OT1/2 cells to phagocytose carcinogenic
insoluble nickel compounds. We found
that 10T1/2 cells readily phagocytose
nickel subsulfide particles, and the phago-
cytosed particles can be readily seen in
phagocytic vesicles (Figure 1). The phago-
cytosis of nickel subsulfide and crystalline
nickel monosulfide by 1OT1/2 cells occurs
when low concentrations of these com-
pounds (0-50 pM) are added to the
medium (Figure 2A) (24). Over the con-
centration range that phagocytic uptake of
nickel compounds occurs, we also observed
a concentration dependent cytotoxicity in

1OT1/2 cells treated with the insoluble
nickel compounds nickel subsulfide and
nickel monosulfide (Figure 2B), With
nickel oxide. we did not observe discrete
phagocytic vesicles, but nevertheless, we
observed cytotoxicity in 1OT1/2 cells
treated with from 0 to 1 mM nickel oxide
(Figure 28) (24).
We next studied the ability of carcino-

genic nickel compounds to induce mor-
phological transformation in 10T1/2 cells
(24). The insoluble carcinogenic nickel
compounds nickel subsulfide, nickel
monosulfide, and nickel oxide (greenish
preparation) all induced dose-dependent
transformation in 10T1/2 cells, over the
same concentration ranges that were
phagocytosed and induced cytotoxicity
(Table 1). This indicated that phagocytosis
of particulate nickel compounds is an ini-
tial step in the processes of cytotoxicity and
cell transformation in 10T1/2 cells (24).
Similar observations have been made by
Costa and co-workers in Syrian hamster
cells (17,18). Nickel subsulfide induced
primarily type II foci, and cell lines derived
from these foci did not grow in soft agarose
(Table 2). Nickel monosulfide-induced
largely type II and occasionally type III
foci, and three nickel monosulfide induced
type II and type III foci gave rise to cell
lines that grew in soft agarose (24). Nickel
oxide induced type II and occasionally type
III foci, and one of these type II and type
III foci gave rise to a cell line that grew in
soft agarose and formed fibrosarcomas in
nude mice (24).

Conversely, the soluble nickel com-
pounds nickel sulfate and nickel chloride,
which are noncarcinogenic or substantially

Figure 1. Phagocytosis of particles of nickel subsulfide by
logarithmically growing 1OT1/2 cells. Reprinted from
Miura et al. (24) with permission.

less carcinogenic than the insoluble nickel
compounds, did not induce morphological
transformation of 1OT1/2 cells (7,8,24).
The inability of soluble nickel compounds
to induce cell transformation is consistent
with whole animal carcinogenicity studies
(1,2,4,5,7-10,13-16). This indicates that
results for induction of morphological
transformation in 1OT1/2 cells with nickel
compounds correlates with the results of
whole animal carcinogenesis assays using
nickel compounds. Our cell transformation
responses with nickel compounds are there-
fore specific responses.
We previously developed an assay

detecting chemically induced (33) stable
(36), specific (37) base substitution muta-
tions (38) to ouabain resistance that results
from a mutation in a gene encoding
(Na,K)-ATPase activity on murine chro-
mosome 3 (39) and confers a ouabain-

Table 1. Morphological transformation of 10T1/2 cells by nickel subsulfide and nickel oxide and lack of mutation to
ouabain resistance.

Total type 11 and type IlIl Ouabain-resistant mutants/
Treatment Survival, % foci per 20 dishes one million survivors

DMSO 100 0 1
Nickel subsulfide

0.5 pM 85 3.4 1
1.0pM 91 2.2 1
5.0 pM 85 3.1 1
10.0pM 70 7.9 1
20.0pM 50 4.1 1
40.0 pM 26 6.4 1

Nickel oxide
50.0 pM 81 0.5 ND
100.0 PM 61 0.8 ND
200.0 pM 61 1.4 ND
400.0 pM 47 3.5 1
600.0 pM 39 6.2 1
800.0 pM 26 4.9 1
1000.0 pM 02 4.7 1

ND not determined. These data are reprinted in modified form from Miura et al. (24), with permission.
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Table 2. Summary of expression and structure of the c-myc protooncogene in metal transformed 1 OT1/2 mouse embryo
cell lines.

Fraction of transformed 1OT1/2 cell lines with
Type of transformed Higher steady state Amplification of the Rearrangement of the
1OT1/2 cell line levels of c-mycRNA c-mycgene c-myc gene

Four sodium arsenite- 3/4 0/4 0/4
transformed lOT12/cell linesa

Four nickel oxide and nickel monosulfide- 1/4 0/4 0/4
transformed 10TI/2 cell linesb

Two lead chromate 2/2 0/4 0/4
transformed 10TI/2 cell linesc

aData from JR Lillehaug, D Evans, and JR Landolph, (unpublished data). bData from T Sakuramoto, D Evans, T Miura, and
JR Landolph, (unpublished data). CData from M Dews and JR Landolph, (unpublished data).

resistant (Na,K)-ATPase activity (35,40).
We next studied the ability of nickel com-
pounds to induce mutations in this assay.
Concentrations of nickel subsulfide and
nickel oxide that induced cytotoxicity and
morphological transformation in 10TI/2
cells did not induce base substitution
mutations to ouabain resistance in 10T1/2
cells (Table 1) (24). This indicates nickel
compounds likely do not induce morpho-
logical transformation by inducing the spe-
cific, restricted type of base substitution
mutations that are detected in an assay for
mutation to ouabain resistance (24).

Recent preliminary studies from our
laboratory indicate that nickel monosul-
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Figure 2. Correlation between (A) the survival fraction
of 1OT1/2 cells treated with various nickel compounds
and (B) the percent of cells that have phagocytosed par-
ticles. For both panels, closed circles represent nickel
subsulfide-treated cells, open circles represent crys-
talline nickel monosulfide-treated cells, and x repre-
sents nickel oxide-treated cells. Reprinted from Miura et
al. (24), with permission.

fide- and nickel oxide-transformed 1OT1/2
cell lines frequently express higher steady-
state levels of c-myc RNA (Table 2). We
hypothesize that transformation of 1OT1/2
cells by nickel compounds results in small
deletions or small mutations in the 3' or 5'
regulatory regions of the c-myc and c-H-ras
protooncogenes, leading to activation of
these protooncogenes via this mechanism
and hence a stabilization of the protoonco-
gene RNAs and the increased steady-state
levels and increased half-lives of these
mRNAs that we observe. Studies to test
this hypothesis critically in our laboratory
are in progress (T Sakuramoto, D Evans, T
Miura, S Boone, and JR Landolph, unpub-
lished data).

We were also able to show that lead
chromate induced a low but dose-depen-
dent and reproducible frequency of type III
morphological transformation (23), the
strongest type of transformation in 1OT1/2
cells (32,34). The transformed cells stably
maintained a focus-forming phenotype,
grew in soft agarose, and formed fibrosar-
comas when injected into nude mice (23).
Lead chromate-treated cells had a large
number of vacuoles and extruded cyto-
plasm over the particles of lead chromate,
apparently in an attempt to phagocytose
lead chromate particles (23). Calcium
chromate, potassium dichromate, and
strontium chromate did not induce mor-
phological transformation in lOT1/2 cells
(23). Strontium chromate was slightly solu-
ble in culture and eventually dissolved and
calcium chromate did not induce transfor-
mation even when added to the cells as a
particulate in acetone suspension (23). This
indicated that unique physicochemical
properties of insoluble lead chromate parti-
cles were responsible for its uptake, likely
by phagocytosis, and its ability to induce
cytotoxicity and cell transformation (23),
and correlated with earlier observations

that the slightly soluble hexavalent chrom-
lum compounds are also carcinogenic in
animal bioassays (4,5,7,8).

We showed that lead chromate induced
morphological transformation in 10T1/2
cells but not mutation to ouabain resis-
tance in 10TI/2 or CHO cells nor muta-
tion to 6-thioguanine resistance in CHO
cells(23). In addition, calcium chromate
did not induce morphological transforma-
tion in 1OT1/2 cells or mutation to
ouabain resistance in 10T1/2 or CHO cells
but did induce mutation to 6-thioguanine
resistance in CHO cells (23). Hence, we
speculated that lead chromate induced
morphological transformation by a mecha-
nism not involving the specific type of base
substitution mutations or frameshift muta-
tions detectable in assays for mutation to
ouabain resistance or 6-thioguanine resis-
tance. Most recently, we obtained prelimi-
nary evidence that in two lead
chromate-transformed 1OT 1/2 cell lines,
the steady-state levels of c-myc RNA are 6-
to 8-fold higher, and the half-life of c-myc
RNA is increased in these cell lines (M
Dews and JR Landolph, unpublished data).
Our current working hypothesis is that
lead chromate induces mutations or small
deletions in the 5' or 3' regulatory regions
of the c-myc gene, leading to a c-myc RNA
with an increased half-life. This may be
due either to deletions or mutations gener-
ated by the reduction of Cr(VI), leading to
either Cr(V) or oxygen radicals generated
by intracellular reduction of Cr(VI).

Third, we observed that sodium arsen-
ite induced a low but reproducible yield of
morphological transformation in 1OTI/2
cellsUR Landolph and C Troesch, unpub-
lished data). Cloning of arsenite- trans-
formed cell lines yielded cell lines that
formed type II and type III foci, grew in
soft agarose, and formed fibrosarcomas in
nude mice. We also found that sodium
arsenite promoted cell transformation initi-
ated by 3-methylcholanthrene. Pentavalent
sodium arsenate and potassium arsenate
did not induce morphological transforma-
tion, indicating that this transformation
was specific for the trivalent state of arsenic
UR Landolph and CT Troesch, unpub-
lished data). These data are consistent with
epidemiological studies indicating that
arsenic compounds are carcinogenic to
humans (1-3,6,8,12). A resolution to the
apparent paradox of the noncarcinogenicity
of arsenic in animal bioassays could be that
sodium arsenite is a weak cell-transforming
agent and a promoting or co-carcinogenic
agent that is not easily detected in the rela-
tively insensitive animal bioassays. A sec-
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Table 3 Summary of the effects of inhibitors of arachidonic acid release and metabolism on induction of anchorage
independence in diploid human fibroblasts.a

Induction of Inhibition of anchorage independence by
Compound anchorage independence Dexamethasone Aspirin Salicylic acid

Nickel subsulfide + + + +
MNNG + + + +
TPA + ND + ND

aPreliminary data from Biedermann KA, Nwankwo JO, Weng J, and Landolph JR, unpublished data. ND not determined.

ond possibility is that humans are more
sensitive to arsenic-induced carcinogenesis
than are rats and mice.

Preliminary work from our laboratory
has first ruled out the hypothesis that car-
cinogenic metal compounds induce mor-
phological transformation in lOTl/2 cells
by inducing amplification or gross
rearrangement of known protooncogenes
such as c-myc, converting them into onco-
genes (Table 2). We are now testing a sec-
ond hypothesis that carcinogenic metal

Figure 3. Induction of (A) cytotoxicity and (6) anchorage
independence in diploid human fibroblasts treated with
nickel compounds. For both panels. closed triangles repre-
sent nickel subsulfide-treated human fibroblasts; open
squares represent nickel acetate-treated cells, and open
triangles represent nickel sulfate-treated cells. Reprinted
from Biedermann and Landolph (26) with permission.

compounds cause mutations or small dele-
tions in the 5' or 3' regulatory regions of
specific protooncogenes, converting them
into activated oncogenes. We are also test-
ing a third hypothesis that carcinogenic
metal salts cause mutational inactivation or
deletion of tumor suppressor genes, thereby
inactivating them. To date, we have found
preliminary evidence for increased steady-
state levels of c-myc RNA in lead chromate,
nickel oxide, and sodium arsenite trans-
formed lOTl/2 cell lines. We have not
found amplification or rearrangements of
the c-myc genes in these cell lines (T
Sakuramoto, T Miura, M Dews, J
Lillehaug, and JR Landolph, unpublished
data). We are currently studying whether
there are small mutations or deletions in
the 3' or 5' regulatory regions of this gene
in these transformed cell lines that might
account for their activation and higher
steady-state levels of the c-myc transcripts
(Table 2).

Induction ofAnchorage Independence
in Diploid Human Fibrobiasts
Recently, we began to study the molecular
mechanisms by which carcinogenic metal
salts induce transformation of cultured
diploid human fibroblasts. As a source of
human fibroblasts, we used circumcised
human foreskins. Previous studies have
shown that organic carcinogens could
induce anchorage independence in cul-
tured human fibroblasts (41-43). We
showed that nickel compounds [nickel sub-
sulfide, nickel acetate, and nickel subsulfide
(Figure 3) (26), hexavalent chromium
compounds (lead chromate, potassium
dichromate, calcium chromate, and
chromium trioxide) (26,27), and arsenic
compounds (sodium arsenite and sodium
arsenate, (26)] induced dose-dependent
anchorage independence (AI) in diploid
human fibroblasts. Metal-induced AI was a
stable phenotype (26,2X). To date, we have
not observed other transformation pheno-
types, such as morphological trans-
formation. All the metal-induced
anchorage-independent cell strains had sat-
uration densities comparable to those of

normal human fibroblasts, and they all
eventually senesced (26,27). The specificity
of carcinogenic metal salt-induced Al is
indicated by the fact that manganese chlo-
ride, mercuric acetate, and calcium chlo-
ride, which are not carcinogenic, did not
induce AI (27).

Nickel subsulfide did not induce muta-
tion to ouabain resistance or to 6-thiogua-
nine resistance (26) and lead chromate did
not induce mutation to 6-thioguanine
resistance (27) at concentrations that were
cytotoxic, and induced AI in diploid
human fibroblasts. Hence, nickel subsul-
fide and lead chromate likely induced
anchorage independence by mutations of
the type not easily measured in assays for 6-
thioguanine resistance. We speculate that
metal-induced oxygen radical generation
and consequent radical-induced mutations
might be part of the mechanism of nickel
subsulfide and lead chromate-induced Al
in diploid human fibroblasts. Calcium
chromate, potassium dichromate, and
MNNG did induce mutation to 6-thiogua-
nine resistance and AI over the same con-
centration ranges, indicating that mutation
might be a mechanism by which these
compounds induced AI (27).

Recently, we have begun to test the
hypothesis that stimulation of arachidonic
acid metabolism and consequent genera-
tion of oxygen radicals are part of the mol-
ecular mechanism by which metal
compounds induce AI in diploid human
fibroblasts. We have found that nickel sub-
sulfide-induced AI in human fibroblasts
was inhibited by dexamethasone, aspirin,
and nordihydroguaieretic acid. Similarly,
MNNG-induced AI was also inhibited by
these three inhibitors of arachidonic acid
release (dexamethasone) and metabolism
(aspirin, which inhibits cyclooxyenase
activity) and oxygen radical persistence
[salicylic acid, which scavenges oxygen rad-
icals (40)]. In addition, the tumor pro-
moter TPA induced Al only when applied
to the soft agar, and the TPA-induced
anchorage-independent phenotype was
reversible and only manifested in the pres-
ence of TPA. However, induction of AI by
TPA was also inhibited by dexamethasone
and aspirin (RA Biedermann, JO
Nwankwo, J Weng, and JR Landolph,
unpublished data; summarized in Table 3).

Conclusions
It is very clear that the mechanisms of
metal carcinogenesis are complex and only
beginning to become understood, and that
the mechanisms of carcinogenesis for each
metal are specific to that metal (44). With
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these considerations in mind, however, a
number of conclusions and interesting
speculations may be drawn from the work
in our laboratory on mechanisms of metal-
induced cell transformation. For the car-
cinogenic insoluble nickel compounds such
as nickel subsulfide, we (24) and others
(17,18) have evidence that these com-
pounds are phagocytosed and that large
amounts of these compounds are therefore
taken up into individual murine (24),
hamster (17,18), and human (26) fibro-
blasts. In addition, our recent preliminary
results indicate that inhibitors of arachi-
donic acid release and its metabolism by
cyclooxygenase and an oxygen radical scav-
enger (salicylic acid) inhibit nickel subsul-
fide-induced AI in diploid human
fibroblasts. We therefore speculate that
nickel subsulfide induces membrane per-
turbations that activate the prostaglandin
synthesis cascade, resulting in generation
of oxygen radicals. This could explain our
inability to measure mutation to ouabain
resistance in 1OT1/2 cells (24) or mutation
to ouabain resistance or to 6-thioguanine
resistance in diploid human fibroblasts
(26) following treatment of these cells with
nickel subsulfide, since oxygen radicals do
not induce the type of mutation that is
easily measured in these assays. At this
time, we cannot assess the fraction of
nickel-generated oxygen radicals that
derive from stimulation of arachidonic
acid metabolism pathway versus the frac-
tion that derive from protein-bound nickel
ions that bind to DNA and generate oxy-
gen radicals, since it is known that nickel
ions bind to proteins that can then bind to
DNA (9,45,46).

Second, we also have preliminary evi-
dence that there are increased steady-state
levels of c-myc RNAs in nickel oxide and
nickel monosulfide transformed 1OT1/2
mouse embryo cells (T Sakuramoto, T
Miura, D Evans, and JR Landolph,
unpublished data). We speculate that this
may result from nickel compound-gener-
ated oxygen radicals, which may induce
mutations in the 3' or 5' regulatory regions
of these protooncogenes, leading to
enhanced stability of these RNAs and con-
tributing to the induction and mainte-
nance of the transformed phenotype. We
know that multiple activated oncogenes
may cooperate in cell transform-
ation(47-49), and we are studying how
many oncogenes are activated in nickel
transformed cell lines.

We also hypothesize that nickel ions
generate oxygen radicals, and that these
oxygen radicals are responsible for inacti-

vating tumor suppressor genes (50), both
known tumor suppressor genes such as the
retinoblastoma gene, Rb (51) and the p53
suppressor gene (54, suppressor genes that
are just becoming identified and under-
stood such as the suppressor gene on
human chromosome 11 (53), and novel
suppressor genes just being discovered,
such as the senescence-mediating suppres-
sor gene that is a target for nickel-induced
cell transformation discovered by Costa's
group (54). We also speculate that nickel
compounds will both inactivate genes such
as the p53 gene and also activate it to a
dominantly acting negative oncogene.
Further work is in progress in our labora-
tory and in other laboratories to test these
hypotheses.

It still is unclear as to what the active
ionic species are that induce chromium car-
cinogenesis. Chromate induces DNA cross-
links in rat liver and kidney (55) and binds
to chromatin and DNA (56). There is much
current speculation as to whether Cr(VI) is
reduced to Cr(V), which is a proximate car-
cinogen, or whether it is reduced to lower
oxidation states, which might generate oxy-
gen radicals (44). Our work with the strong
carcinogen lead chromate (57) has given
preliminary results that lead chromate trans-
formed lOT1/2 cell lines have higher steady-
state levels of c-myc RNA (M Dews and JR
Landolph, unpublished data). We are test-
ing the hypothesis that these higher steady-
state levels of c-myc RNA are due to
mutations in the 3' or 5' regulatory regions
of the c-myc gene, leading to a longer half-
life of c-myc RNA and contributing to
maintenance of the transformed state. Our
results with lead chromate indicate that it
does not induce mutation to ouabain resis-
tance in 10T1/2 or CHO cells or mutation
to 6-thioguanine resistance in CHO cells
(23). Hence, we speculate that this com-
pound may generate Cr(V) and/or generate
oxygen radicals that induce mutations or
small deletions in the 3' or 5' regulatory
regions of the c-myc gene activating it to an
oncogene, by leading to an increased half-
life of c-myc RNA. Work is in progress in
our laboratory to test this hypothesis.

Finally, we have also found preliminary
evidence for increased steady-state levels of
c-myc expression in sodium arsenite trans-
formed cell lines. There was no ampli-
fication of the c-myc gene in
arsenite-transformed 10T1/2 cell lines UR
Lillehaug, D Evans, and JR Landolph,
unpublished data). This is interesting,
because Lee et al. have found that arsenite
induced amplification of the dihydrofolate
reductase gene in mouse 3T6 cells (58).

Since we have found that sodium arsenite
does not induce mutation to ouabain resis-
tance in 1OT1/2 cells (R Landolph and C
Troesch, unpublished data), we again postu-
late that arsenite induces mutations in 3' or
5' regulatory regions of the c-myc gene in
these transformed cell lines. The precise
mechanism by which arsenite induces such
mutations is not clear. Work in our labora-
tory is currendy in progress to determine the
type of mutations arsenite induces in the c-
myc gene that contributes an increased half-
life of c-myc RNA and to maintenance of
the transformed phenotype (M Dews and
JR Landolph, unpublished data).

In the case of arsenic-, nickel-, and
chromium-induced cell transformation, we
postulate that these compounds also cause
mutation and/or deletions in tumor sup-
pressor genes that inactivate these genes. We
postulate that a combination of mutation or
deletion induces activation of single or mul-
tiple protooncogenes into oncogenes, plus a
mutational or deletional inactivation of
tumor suppressor genes, is part of the
mechanism of metal carcinogenesis.
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